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Abstract. A modification of perturbation theory, known as the delta expansion (variationally improved
perturbation), gave rigorously convergent series in some D = 1 models (oscillator energy levels) with
factorially divergent ordinary perturbative expansions. In a generalization of the variationally improved
perturbation technique appropriate to renormalizable asymptotically free theories, we show that the large
expansion orders of certain physical quantities are similarly improved, and prove the Borel convergence of
the corresponding series for mv<∼0, with mv the new (arbitrary) mass perturbation parameter. We argue
that non-ambiguous estimates of quantities relevant to dynamical (chiral) symmetry breaking in QCD are
possible in this resummation framework.

1 Introduction

A “first principle” determination of the order parameters
characterizing dynamical (e.g. chiral) symmetry breaking
(χSB) in asymptotically free theories (AFT) like QCD is
traditionally considered inaccessible (except perhaps from
lattice calculations), due to three main obstacles:

(i) order parameters, like the quark condensate 〈q̄q〉1/3,
are expected to be of O(ΛQCD), so that the coupling at
such scale is large: ordinary perturbative expansion is in-
validated.
(ii) At arbitrary perturbative order, 〈q̄q〉 and other χSB
order parameters vanish anyhow in the massless limit:
their chiral limits are (perturbatively) trivial.
(iii) A more subtle but equally important argument is
that attempts to extract genuine non-perturbative con-
tributions to such quantities meet with inherent ambigu-
ities, as indicated by the (infrared) renormalon singulari-
ties of perturbative expansions [1,2]. Conventional wisdom
thus treats 〈q̄q〉 and other non-perturbative condensates
as parameters of a systematic operator product expansion
(OPE)1, as best illustrated in the SVZ formalism [3].

Yet in many field theory models, definite non-pertur-
bative results may be obtained from an appropriately re-
summed (but different) expansion, like the 1/N expansion
[4,5]. There also exist powerful summation techniques,
like the Borel method [6,2] which, even for non-Borel

1 Unlike the gluon condensate, the presence of χSB conden-
sates like 〈q̄q〉 in OPE’s is however not directly inferred by
infrared renormalons, these being screened by chiral symme-
try [1], cf. argument (ii) above. We will see that renormalons
and argument (iii) are nevertheless relevant to χSB quantities
in our context

summable expansions like typically in QCD, gives nev-
ertheless precious information on the nature of (power-
like) non-perturbative contributions to a given physical
quantity. An alternative summation method, known as
the delta expansion (DE) or “variationally improved per-
turbation” (VIP) [7,8], is based on a reorganization of
the interaction Lagrangian making it depend on arbitrary
adjustable parameters, to be fixed by some optimization
prescription. In various models DE-VIP exhibits (though
often rather empirically) an improved convergence of the
perturbative expansion. Moreover in some D = 1 models,
for which the anharmonic oscillator is typical, DE-VIP is
equivalent [9] to the “order dependent mapping” (ODM)
method [10], and optimization is equivalent to a rescaling
of the adjustable oscillator frequency (mass) with pertur-
bative order, which can essentially suppress the factorial
asymptotic behavior of ordinary perturbative coefficients.
Such a procedure was proven rigorously to converge [9,
11] (for an adequately rescaled mass) toward the exact re-
sult, e.g. for the oscillator energy levels [12] and related
quantities.

Here we reconsider a variant of DE-VIP adapted to
higher dimensional renormalizable theories, proposed
some time ago [13–15]. The basic idea is to perform a mod-
ification of the perturbative expansions in two stages: first
exploiting specific renormalization group (RG) properties,
which transform the ordinary expansion (in a coupling g)
of certain physical quantities, depending only on g and
on a mass m, in the alternative form of “mass power”
expansions (MPE) in (m̂/Λ)α [m̂ is the renormalization
scale-invariant mass, Λ the basic RG scale and α is given
by known RG coefficients]. This construction resums the
RG dependence to all orders (at least in specific schemes),
and most interestingly exhibits a non-trivial massless (chi-
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ral) limit [14,15] for DSB (χSB) order parameters, or for
analogous quantities like the “mass gap” in D = 2 mod-
els [13]. However, such a result turns out to be well de-
fined only in the approximation of neglecting all the purely
perturbative (non-RG) dependence. When arbitrary large
orders of the complete (non-log) perturbative series are
included, our naive mass gap result is plagued with ambi-
guities originating mainly from renormalon singularities,
cf. point (iii) above, as we shall examine in more detail
here.

However, in a second stage, an appropriate version
of the (order dependently rescaled) DE-VIP can be per-
formed on the complete MPE series in m̂/Λ, essentially re-
placing the true physical mass by an arbitrary adjustable
mass parameter. In this note we mainly investigate the
large order behavior of the resulting “variational” expan-
sion in this mass parameter2. We find that it produces
a renormalization scheme (RS) dependent factorial damp-
ing of the original perturbative coefficients at large orders.
Yet, unlike the oscillator case, the damping is generally not
sufficient to make the DE-VIP series readily convergent,
in the standard perturbative regime, when the generically
expected renormalon singularities are taken into account.
But we show that the series can be Borel convergent, if
approaching the chiral limit with the arbitrary mass pa-
rameter Re[m̂]<∼0. These results apply formally a priori
to any (asymptotically free) renormalizable models. Some
concrete examples are the D = 2 O(N) Gross–Neveu (GN)
model [5] (where the mass gap is known exactly [17]); or a
D = 4 gauged AFT with nf massless fermions like QCD,
where the expected [18] SU(nf )L ×SU(nf )R → SU(nf )V

breaking is exhibited via non-perturbative order parame-
ters.

2 Transmuted mass expansion and mass gap

In this and the next section we essentially summarize some
of the constructions in [13–15]. To simply illustrate the
first stage, consider in a “generic” AFT the first RG order
evolution for the renormalized “current” mass:

M1 = m(µ)[1 + 2b0g
2(µ) ln(M1/µ)]−γ0/(2 b0), (1)

where b0, γ0 are one-loop RG coefficients, with b0 > 0
for an AFT [our normalization is β(g) = −b0g

3 − b1g
5 −

· · ·, γm(g) = γ0g
2 + γ1g

4 + · · ·], and the self-consistent
condition M1 ≡ m(M1) defines M1. Now, (1) equivalently
reads

M1(m̂) = m̂[ln(M1/Λ)]−A ≡ m̂F−A, (2)

with Λ = µ exp[−1/2b0g
2(µ)] the RG invariant scale, m̂ ≡

m(µ)[2b0g
2(µ)]−A the scale-invariant mass (A≡γ0/(2b0)),

and in (2)

F (m̂/Λ) ≡ ln(m̂/Λ) − A lnF = AW [A−1(m̂/Λ)1/A], (3)

where the Lambert [19] function, W [x] ≡ lnx − lnW , is
plotted in Fig. 1. Equation (3) has the remarkable property

2 See also [16] for a preliminary discussion
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Fig. 1. The Lambert function W (x) compared to lnx

F 
 (m̂/Λ)1/A for m̂ → 0, in contrast with the ordinary
Log (see Fig. 1), which is asymptotic to F (m̂/Λ) for m̂ �
Λ. More precisely, on its principal branch (which is real-
valued for real arguments), F has an alternative series
expansion:

F (x) =
∞∑

p=0

(−1
A

)p (p + 1)p

(p + 1)!
x(p+1)/A (4)

with finite convergence radius Rc = e−AAA. M1(m̂) in (2)
thus exhibits different branches according to the values of
the RG parameter A (see Fig. 2). Now, for most values of
A, there is only one branch which for real m̂ values, is real
and continuously matching the asymptotic perturbative
behavior of F at large m̂: the one giving a non-zero “mass
gap” M1 = Λ for m̂ → 0 (region I in Fig. 2). Algebraically,
the mass is obtained by expanding (4) in (2):

M1(m̂ → 0) = m̂[(m̂/Λ)1/A+· · ·]−A = Λ(1+O(m̂/Λ)1/A),
(5)

which may be viewed as a generalization (for m �= 0) of the
“dimensional transmutation”. Note that (5) readily repro-
duces, e.g., the GN O(N) model mass gap in the large N ,
m → 0 limit (where A → 1 for N → ∞), traditionally ob-
tained in a different way [5]. Equation (5) is, however, not
a proof of dynamical χSB: rather, if χSB occurs, the fact
that any mass is proportional to Λ is consistently incorpo-
rated by the properties of F (m̂) for any m̂, which provides
an explicit bridge between the “non-perturbative” m̂<∼Λ
regime, where F has a power expansion (4), and the usual
short distance perturbative m̂ � Λ (Log) regime. A cru-
cial point is the difference between the usual effective cou-
pling g2(p2) ≡ 1/[b0 ln(p2/Λ2)], having a Landau pole at
p2 = Λ2, and F−1(m̂) here, having its pole at m̂ = 0, gov-
erning the massless limit (5) of the (pure RG) mass gap
(2)3. Accordingly along the continuous branch I, M1(m̂)
has no singularity for 0 < m̂ < ∞, as is clear from (5) and
Fig. 2.

3 W (x) appears in various branches of physics [19], in par-
ticular recently also in the QCD and RG context [20]. Yet its
connection with the non-trivial chiral limit (5) was unnoticed
before [13–15], to the best of our knowledge
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Fig. 2. The different branches of M1

in (2), for A = 4/9 (corresponding to
first RG order QCD with three active
quark flavors)

3 Pole mass gap and other DSB quantities

Equation (2) also defines a (lowest order) “pole” mass, be-
ing scale invariant to all orders (and gauge invariant as
well, if gauge symmetry is relevant, as in QCD), thanks
to its continued fraction form in M1. Yet the genuine pole
mass is not given simply by (1), as it includes non-log
perturbative and RG contributions of arbitrary higher or-
ders, though for most theories one only knows at present
the perturbative series up to the second or third order co-
efficients, like e.g. in the GN model [22,13] or QCD [21].

A generalization of (2), perturbatively consistent [15]
with the usual pole mass, can be defined4:

MP (m̂) = 2−Cm̂F−A[C + F ]−B
∞∑

n=0

dn(2b0F )−n, (6)

with

F = ln[m̂/Λ] − A lnF − (B − C) ln[C + F ] (7)

and
A =

γ1

2b1
, B =

γ0

2b0
− A, C =

b1

2b2
0
. (8)

F (m̂) in (6) and (7) resums the RG dependence in ln[m̂] at
two-loop order exactly (or even to all orders in the scheme
bi = 0, γi = 0 ∀i ≥ 2). Most interestingly, similarly to (4)
F also has an (A,B,C dependent) expansion in (m̂/Λ)1/A

for sufficiently small m̂, with A now defined in (8). The
coefficients dn implicitly include the non-log perturbative
contributions from n-loop graphs (generically dominant,
as discussed below), plus eventually (subdominant) con-
tributions from higher RG orders.

A similar construction can be performed for other phys-
ical quantities, at least those depending only on m and g.
Examples are the perturbative expansion of the GN model
vacuum energy [13], or in QCD the χSB order parameters
Fπ/Λ (the pion decay constant) and 〈q̄q〉(µ)/Λ3 [14,15].

4 Strictly, (6) applies only if C ≡ b1/(2b2
0) ≥ 0. If C < 0

(as in the O(N) GN model, corresponding to an infrared fixed
point at g2 = −b0/b1 > 0), an alternative appropriate RG
summation can be defined [13,25]

Now in (6), there are crucial differences with the “pure
RG” mass gap, (2).
(1) The pole mass (or other physical quantities similarly)
is infrared finite, gauge- [23], scale- and scheme-invariant,
but the relation between the pole mass and e.g. the run-
ning mass is scheme dependent, which is manifest here by
the RS dependence in (6) of the following: the perturba-
tive coefficients dn; the RG coefficients A, B in (8); and
of course Λ.
(2) The dominant contributions dn in (6) behave rather
generically as [24,2]

dn+1 ∼
n → ∞

(2b0)nn!, (9)

so that the series (6) is badly divergent for any m̂ > 0,
and not even Borel summable: such a factorial growth of
the perturbative coefficients, with no sign alternation, im-
plies [2] ambiguities of O(Λ); this we reexamine within
the present context in Sect. 5. The O(N) GN model mass
gap, at order 1/N , also exhibits infrared renormalons sim-
ilar [27] to (9), if considering only its naive perturbative
expansion. In QCD, insertions of the (resummed) gluon
propagator in the Fπ or 〈q̄q〉 perturbative expressions po-
tentially give factorially growing asymptotic coefficients:
while usually considered irrelevant in the m → 0 limit
(cf. argument (ii) above), the factorial behavior survives
a priori in our construction due to the non-trivial chiral
limit5.

4 Variationally improved mass expansion

We shall examine now how to possibly cure the latter po-
tential ambiguities of such a resummation of DSB quanti-
ties, by combining the previous MPE series construction
leading to e.g. (6) with a specific form of delta expansion.
As mentioned in the introduction, DE-VIP is essentially a
reorganization of the interaction terms of the Lagrangian.

5 The form of those “χSB parameter renormalons” will be
discussed elsewhere [25,26]
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Fig. 3. Singularities and equivalent integration contours in
the v plane, for A = 1

More specifically, here we define a (linear) DE as the sub-
stitution

m(µ) → (1 − δ)mv, g2(µ) → δg2(µ) (10)

within perturbative expressions at arbitrary order, where
m(µ) is the renormalized Lagrangian mass (in e.g. the MS
scheme), δ is the new expansion parameter, and mv an
arbitrary adjustable mass. Equation (10) is equivalent to
adding to and subtracting from the massless Lagrangian
a “trial” mass term mv [δ interpolating between the free
(δ = 0) and the interacting massless Lagrangian (δ = 1)],
and is entirely compatible with renormalization [13] and
gauge-invariance [15]. The procedure then usually [8] is
to take the limit δ → 1 after performing a perturbative
expansion of the relevant physical quantities to fixed or-
der δk, exhibiting a residual mv dependence, so that an
optimization prescription, typically the “principle of min-
imal sensitivity” (PMS) [7], can be applied with respect
to mv. However, we go here a step beyond this standard
PMS usage by following more closely the logic that leads
to rigorous convergence properties of the DE method for
the oscillator.

In what follows we only investigate for simplicity the
mass gap (6), but our construction can easily be general-
ized to similar DSB quantities. After applying substitution
(10), MP (m̂, δ) ≡ ∑

k ak(m̂)δk can be most conveniently
directly resummed, for δ → 1, by contour integration [13]
around δ = 0, to arbitrary order K: an appropriate change
of variable allowing one to study the m(µ) → 0 (equiva-
lently δ → 1) limit in (10) is

δ ≡ 1 − v/K, mv = Kγm̂v. (11)

Equation (11) is simply a convenient way of parameter-
izing how rapidly the Lagrangian mass m(µ) → 0 limit
is reached (as controlled by γ ≤ 1) as a function of the
(maximal) delta expansion order K. Similarly to [9] the
point is to adjust the rates at which m(µ) → 0 (δ → 1)
and K → ∞ are simultaneously reached, with no a priori
need of invoking an explicit optimization principle.

The final contour integral summation takes a simple
form, for K → ∞:

MP /Λ ∼
N∑

n=0

1
2πi

∮
dvev/m′′

F−A[v]dn(2b0F [v])−n, (12)

where m′′ ≡ m̂v/Λ, N is the maximal perturbative order,
and after deformation the contour encircles the semi-axis

Re[v] < 0 (see Fig. 3), and also for simplicity we fix from
now on the scaling parameter in (11) to its maximal value
(γ = 1) still compatible with massless limit (for m̂v → 0).
[The general γ scaling (11) can be analyzed [25,26] in a
way more similar to the oscillator [9,11], i.e. without the
peculiar contour δ summation (12), but it largely com-
plicates the algebraic analysis for renormalizable theories.
In (12) we also omit some overall constant factors (due
e.g. to the Λ definition) irrelevant for convergence proper-
ties, and temporarily made a RS choice such that B ≡ 0
in (6)–(8), rendering certain algebraic expressions below
more tractable, without much loss of generality.] Equa-
tion (12) can be well approximated analytically (at least
for slightly restricted RS choices, as indicated above and
further below):

MP /Λ

∼ 1 +
1

2b0

N∑
q=1

[
N−q∑
p=0

Γ [p + q](p + q + A)(q + A)p−1

ApΓ [1 + p]Γ [1 + q/A]

]

× (m′′)−q/A, (13)

where we assumed the leading renormalon behavior (9)6,
and we used essentially (4) together with

∮
dvevvr = 2πi/

Γ [−r], ∀r.
Now, some restrictions apply to (13): first, the sum

over p is bounded iff.

1/A ∈ N∗, (14)

which we assume for simplicity from now on. This is not
very restrictive, except that for arbitrary AFT it is gen-
erally not possible that A both satisfies (14) and B = 0
in (8), as assumed in (12). But the more general scheme
B �= 0 simply makes (13) algebraically more involved,
without affecting the asymptotic behavior and conver-
gence properties discussed below.

Second, strictly (13) is valid only asymptotically, for
sufficiently large N : due to the finite convergence radius of
the expansion (4), interchanging the sum in (4) and inte-
gration in (12) is not rigorously justified. However, when
(14) holds, the former branch point v = 0 is simply a
pole, which allows one to choose an equivalent contour
of arbitrarily small radius around v = 0, thus always in-
side the convergence radius of (4) (see the dashed small
circle contour in Fig. 3). So, only the simple pole terms
v−1 contribute to (12), which finally sum up to (13). The
extra contribution (around the cut at v = −e−1, e.g. for
A = 1) gives the difference between the “exact” integral
(12) and the expansion (13) and can be evaluated numer-
ically. These contributions are easily shown for A = 1
to contribute as O(e−(em′′)−1

)h[N ] relative to (13), where
h[N ] rapidly decreases for N → ∞. Thus for large enough

6 The original n! coefficients in (9) correspond to Γ [p + q]
in (13). Higher order refinements on the infrared renormalon
structure may easily be implemented: they essentially replace
(n−1)! → Γ [n+b1/(2b2

0)](1+rRS/n+...) where rRS depends on
RS via b2 etc. [2], without affecting the convergence properties
discussed below
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N (and/or small m′′) those contributions are unessential
for the convergence properties discussed below.

The announced factorial damping of coefficients, as
compared to the original perturbative expansion, is ex-
plicit in (13). Yet, closer examination indicates that the
damping is insufficient to make this series for N → ∞
readily convergent. Before considering the asymptotic be-
havior of the full series (13), it is instructive to examine
the p = 0 terms, behaving as

∼
N∑
q

Γ [q]/Γ [1 + q/A](m′′)−q/A. (15)

The denominators in (15) overcompensate the numerator
factorials iff.

0 < A ≤ 1, (16)

where for D > 1 AFT, A is RS dependent, as discussed
in Sect. 3. Thus, if our series would only consist of terms
of the form (15), the solution would be simply to perform
appropriate scheme changes A → A

′
in (6) and (13) etc.,

so that a damping of coefficients larger than (or equal to)
the factorial growth would make the series convergent.
[For such RS changes in A one should consistently derive
the corresponding change in e.g. the first few perturbative
coefficients d1, etc., and in Λ, but this one-parameter RS
change does not reintroduce any factorial behavior in dn at
large orders. Moreover, if (16) holds, any generic infrared
(or ultraviolet) renormalon behavior of the form ∼ rnn!
with r arbitrary [2] is damped similarly.]

Unfortunately, the large N behavior of (13) differs
from the simple “oscillator form” (15), due to the p ≥ 1
terms in the expansion (4) reminiscent of RG properties.
For any low p � N , renormalon factorials are still over-
compensated if A ≤ 1, but the Γ [1 + q/A] damping de-
creases in strength as p increases, giving increasing con-
tributions to the sum over p. All in all, the leading con-
tributions to the coefficients of (13) occur at intermediate
values of p. Nevertheless, the idea of damping factorials
from an appropriate RS choice does survive, when the se-
ries (13) is Borel transformed, as examined in the next
section.

5 Borel convergence of DE-VIP

A Borel integral slightly adapted to our case reads

BI(m̂) ≡ M̃P (m̂) = 2−Cm̂F 1−A

× (C + F )−B

∫ ∞

0
dte−Ft

[
1 + (2b0F )−1

∞∑
n=0

tn

]
, (17)

which would be (asymptotically) equal to (6) by a formal
expansion7 (upon assuming (9)), would the pole at t0 = 1

7 We define the Borel transform (integrand of (17)) by divid-
ing the series coefficients by (n − 1)! for convenience. Also, the
summed RG dependence m̂F −A(C+F )−B , having no factorial
behavior, is factored out of the Borel transform

not make the integral (17) ill defined. One should make a
choice in deforming the contour e.g. above (or below) the
pole, which results in an ambiguity, easily calculated to
be O(e−F ). Since F ∼ ln[m̂/Λ] for m̂ � Λ, an O(Λ/m)
ambiguity [2] for the “short distance” (M, m̂ � Λ) pole
mass is recovered. But in our construction (4) allows one
to trace the behavior of F all the way down to m̂ → 0,
where F → 0: there the ambiguity becomes O(1), and the
naive RG-summed mass gap (5), which is O(Λ), gets an
ambiguity of the same order, as announced.

Now for any given choice of contour avoiding the pole
(or cut [2] at higher RG order) in the Borel plane t, let
us apply the DE-VIP as defined in Sect. 4, introducing
the δ expansion and contour resummation as in (12), this
time on the Borel integral (17). Interchanging the contour
and Borel integrals, one can find after some algebra the
asymptotic behavior for N → ∞:

M̃P
var(m

′′) ∼ Λ

[
1 +

∫ ∞

0

dt

2b0

∞∑
q

(tAet/m′′)q/A

Γ [1 + q/A]

]
, (18)

where we neglected for simplicity here the two-loop RG
dependent (C + F )−B term in (17), as it does not affect
the asymptotic behavior. It thus appears that the asymp-
totic behavior of the Borel integrand in (18) is that of an
entire series (at least for A > 0), i.e. with no poles for
0 < t < ∞. More precisely, the pole at t0 = 1 in the
original (standard) Borel integrand has been pushed to
t0 → +∞ due to the factorial damping, so that the Borel
integral is no longer ambiguous. However, the integral (18)
is not convergent, at least for Re[m′′] > 0, so that the se-
ries is not Borel summable for standard (perturbative) m′′
values.

But conversely, the integral in (18) can converge, for
Re[m′′] < 0. This is the case at least for A = 1, which
can always be chosen by an appropriate and simple RS
change, as previously explained. Now, since m′′ ≡ mv/Λ
is an arbitrary parameter (and physical quantities any-
way only depend on m2 in relativistic field theories), it
should be legitimate to reach the chiral limit m′′ → 0, of
main interest here, within the Borel convergent half-plane
Re[m′′] < 0. For A �= 1, one may also choose the arbitrary
parameter m′′ with Re[(m′′)1/A] < 0 such that (18) con-
verges, though this is not always possible for any arbitrary
A values. This is however only an artifact of our simplest
choice of the δ expansion summation defining the DE-VIP
series and leading to (18): for instance, an appropriate (A
dependent) generalization of (10)–(11) defining the DE-
VIP expansion, directly leads to a Borel convergent series
independently of the A values [25]. Moreover, as already
mentioned the function F (m̂) in (3) is well defined (ana-
lytic) for any A values in a circle of radius e−AAA around
zero (and for A = 1 the only singularity is at F = −1
i.e. m̂/Λ = −e−1, cf. Fig. 1). The higher RG order F in
(7) has similar properties, with finite (but RS dependent
[15]) convergence radius around zero. Thus, one can choose
Re[m′′]<∼0 and/or equivalently Re[F (m′′)] < 0, while the
mass gap Re[M(F )] ≡ Re[M(m̂)] always remains positive,
see Fig. 2.
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Actually, one can see directly the Borel summability of
(17), independently of A, without the need to consider the
DE-VIP expansion: if F < 0, F ≡ −|F | simply produces
the adequate sign alternation in the factorially growing
coefficients. More precisely, a straightforward calculation
of (17) for Re[F ] < 0 (again neglecting the two-loop RG
dependence C, irrelevant to asymptotic properties), gives

M̃P /Λ ∼ e−|F | +
1

2b0
Ei(−|F |), (19)

where the exponential integral function Ei(−x) has a well-
defined (sign alternated) asymptotic expansion for x > 0.

Note however that the DE-VIP expansion, leading to
(18), appears to improve further the asymptotic behavior,
at least for A = 1, as compared to (19), due to the extra
factorial damping. For A = 1 and Re[m′′]<∼0 (18) becomes
after integration

M̃P
var(m

′′) ∼ const.Λ(1 + f(|m′′|)), (20)

where f(|m′′|) → 0 exponentially fast. The (here unspec-
ified) overall constant in (20) originates essentially from
RG dependence, involving non-trivial factors such as 2−C

etc. at second RG order, cf. (6) and (17).
We have thus obtained Borel convergence for a certain

range of the arbitrary mass, strictly only for Re[m′′] < 0,
but in which in addition the purely perturbative contribu-
tions are small and even vanishing in the chiral |m′′| → 0
limit. This does not mean, though, that our final DE-
VIP result is completelly independent of the perturbative
information, since the above series are only asymptotic
to the exact series. Rather, it suggests that the “non-
perturbative” result in the chiral limit may be essentially
determined by pure RG properties, plus eventually the
very first few perturbative terms, but not influenced by
details of the large perturbative orders. Note indeed that
only from the properties of F around F<∼0 (thus inde-
pendently of the DE-VIP construction) the Borel sum in
(19) reproduces at least qualitatively the asymptotic be-
havior of the exact 1/N result in the O(N) GN model8:
in this model the 2b0 in (19) is more precisely replaced
by N − 2, and the exact result [17] has an asymptotic ex-
pansion [27] similar to (19), except for a finite term γE ,
which not surprisingly cannot be guessed by our simple
Borel summation of the (leading) renormalon behavior in
(17).

6 Discussion

Though renormalon ambiguities are perturbative artifacts
expected to disappear (or more precisely to cancel out
with OPE contributions) in truly non-perturbative calcu-
lations [1,2,28,27], such explicit cancellations are gener-
ally inaccessible for theories like QCD. Rather, the pe-
culiar damping mechanism of factorial divergences exhib-
ited here is intuitively due to the fact that our reorgani-
zation of the perturbative expansions makes those much

8 The Borel summability of the exact 1/N O(N) GN model
mass gap, independently of the present construction, is ana-
lyzed in details in [27]

more similar to the oscillator energy level expansion, ex-
hibiting a dependence on m̂v/Λ, (4), which is power-like
(rather than log-like) for sufficiently small m̂v. Moreover,
the adjustable parameter m̂v/Λ may be order dependently
rescaled, or can take arbitrary values, in particular Re[m̂v/
Λ] < 0 producing sign alternation of factorial coefficients.
The DE-VIP expansion appears in that way to “bypass”
the need for explicit (and generally complicated) cancella-
tion between perturbative and non-perturbative contribu-
tions, at least for certain physical quantities like the mass
gap. Note also that the linear DE-VIP taking the form
(12), and (18) when combined with the Borel method, is
only one among other possible similar resummations. In
particular, we emphasize that the obtained convergence
properties for Re[F ] < 0 (Re[m̂v/Λ] < 0) do not depend
on the detailed properties of the “delta expansion” contour
integrals here considered, e.g. (12) [which lead however to
rather simple and tractable expressions in the massless
limit and for Borel transforms (18)–(20)]: more generally
applying the δ expansion idea in slightly different forms
may replace (13) and subsequent results with an eventu-
ally different series [25], but with similar asymptotic and
(Borel) convergence properties.

In summary, our construction exhibits an explicit
counter-example to the conventional wisdom arguments
(i) and (ii), and to some extent (iii), mentioned in the in-
troduction. In the present paper we have only analyzed
the formal Borel convergence properties, a priori applica-
ble to any AFT, relying essentially on the properties of
F (m̂) in (3) and (7), interpolating smoothly from the or-
dinary perturbative coupling to the infrared mass power
expansion. These convergence properties can be viewed as
the generalization to D > 1 renormalizable theories of the
ordinary convergence properties of the DE-VIP for the
oscillator [9,11]. Next we argue that such a summation
recipe can provide a well-defined basis to estimate more
precisely some of the χSB order parameters in QCD or
other models, and a more detailed study with concrete nu-
merical applications to the GN model and QCD will be ex-
plored in [25]. Though one may eventually raise the point
that in QCD-like theories, other contributions to the χSB
order parameters of “truly non-perturbative” origin (i.e.
unreachable by any resummation means, and/or related
e.g. to instanton phenomena typically) may be expected,
the resummation contributions here considered should be
a useful piece of information.
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